	I. FO WERS AIND ROOT	S-NOTE SHEET
NAME: Miss Cramer		HOUR:
Lesson 4.1: Powers and Expo	<u>onents</u>	
	Vocabulary	
Power	_ 5 ²	Exponent Base
	_	Dase
Exponent	Power	Base
tells how many	A number that	the number
times to multiply the factor	is expressed using an exponent	
	each expression using expo	
1a. $\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)^3$	1b. x • x • x •	
$1c. (c-d)(c-d)$ $c^{2}-d^{2} (c-d)$	$1d.9 \cdot f \cdot f \cdot q$	g.f.f.g 9.f4.g
	Order of Operations	
Step 1: Groupin	g Symbols	()[]
Step 2: Expon	ents	
	tion and Div	rision
Step 4: Addition a	nd Subtraction Left → Right	
	rom the top of a building. After the ball trav	

 $4.9(8)^2$. How far did the ball drop?

313.6 576

Evaluate each expression if
$$a = 5$$
, $b = -2$, and $c = \frac{3}{4}$.

3a. $10 + b^2$ 3b. $(a + b)^3$ 3c. $2 - c^2$

$$10 + (-2)^2$$

Lesson 4.2: Negative Exponents

Dessoir 1.2.1			Vocabu	lary			
Ter	m			Defii	nition		
Negative Ex	ponent	$a^{-n} = \frac{1}{a^n}$					
Exponential Form	10^{3}	10 ²	10 ¹	10^{0}	10 ⁻¹	10-2	10 ⁻³
Standard Form	1,000	100	10		0.1	0.01	0.001
Zero Exponent Ray number with a zero exponent equals 1.							
Write each expression using a positive exponent.							

1a.
$$3^{-5}$$
 | 1b. y^{-3} | 1c. 2^{0}

Write each fraction as an expression using a negative exponent other than -1.

2a.
$$\frac{1}{6^3}$$
 $\sqrt{-3}$ 2b. $\frac{1}{25} = \frac{1}{5^2}$ $= 5^{-2}$ 2c. $\frac{1}{27} = \frac{1}{3^3} = 3^{-3}$

3a. the slowest-moving fish is a sea horse. It swims at a maximum speed of 0.0001 mile per minute. Write the decimal as a fraction and as a power of ten.

$$\frac{1}{10,000} = \frac{1}{10^4} = 10^{-4}$$

3b. The smallest species of ant has a mass of 0.00001 gram. Write the decimal as a fraction and as a power of ten.

$$\frac{1}{100,000} = \frac{1}{108} = 10^{-5}$$

Evaluate each expression if m = 4 and n = 3. $4a. m^{-2}$ $4b. 6mn^{-4}$ 8

$$\frac{1}{10} = 0.0025$$

$$4c. -n^{-3}$$

$$-\frac{1}{27} = -0.037$$

$$\frac{8}{29} = 0.290$$

4d.
$$-4m^{-2}$$

$$-\frac{25}{99} = 0.25$$

$$-\frac{1}{4} = 0.25$$

Lesson 4.3: Multiplying and Dividing Monomials

Product of Powers Property

To multiply powers with the same base, add the exponents. $\chi 5. \chi^3 = \chi^{5+3} = \chi^8$

Vocabulary				
Term		Definition		
Monomials	a number, avan	rable, or a rand/or variables.		
Monomais	Example	Non-Example		
	1 a 2mn	5×+7		

Find each product. Express using positive exponents

1a.
$$5^2 \cdot 5^3$$

2a.
$$y^6 \cdot y^3$$

2b.
$$r^6 \cdot r^{-5}$$

1b. $12^3 \cdot 12^{-2}$

$$2c. a^7 \cdot a^6$$

$$2d. x^{-6} \cdot x^2$$

$$2x^3 \cdot 8x^4 = (2 \cdot 8) \cdot (x^3 \cdot x^4) = 10x^{3+4} = 10x^7$$

3a.
$$(5a^2)(-3a^4)$$

3b.
$$6b^{-4} \cdot 2b^2$$

$$3c. (6x^3)(-3x^5)$$

3d.
$$10n^7 \cdot 5n^2$$

Quotient of Powers Property

To divide powers with same base, 12t7=4t3
subtract their $\frac{8^5}{8^3} = 8^{5-3} = 8^2$ $3t^4 = 4t^3$ exponents $\frac{8^5}{8^3} = 8^{5-3} = 8^2$

$$\frac{8^5}{8^3} = 8^{5-3} = 8^2$$

Find each quotient. Express using positive exponents.

4a.
$$\frac{3^9}{3^2}$$

4b.
$$\frac{b^7}{b^6}$$

4c.
$$\frac{4^5}{4^{-2}}$$

4d.
$$\frac{s^{-4}}{s^{1}}$$

5a. About how many times as great is the diameter of Earth than the diameter of Mars?

$$\frac{2^{13}}{2^{12}} = 2^{1}$$

Planet	Approximate Diameter (mi)
Mars	212
Earth	2 ¹³
Neptune	215

5b. The diamter of a small asteroid is 10^{-1} kilometer. The diameter of Ceres is 10^3 kilometers. About how many times as great is the diamtere of Ceres than the diamter of the smaller asteroid?

Lesson 4.4: Scientific Notation

Vocabulary					
Term	Definition	Example			
Standard Form	Numbers that do not include exponents	2,364			
	Its expressed using a factor and a power of 10	3.025 x 108			
Scientific Notation	0 × 10 0	Non-Example 11.35 × 10 ⁻⁷ 0.72 × 10 ⁻¹⁰⁰			
Positive Exponent The number is bigger The number is between than one. Move the 34 zero and one. SN7SF Move decimal to the right. & the decimal to the left.					
Express each number in standard form.					
1a. 4×10^2	1b. 5.94×10^7 1c. 1	1.3×10^{-3}			
400	59,409,000	0.0013			

	Express each number in scientif	ic notation
2a. 900	2b. 18,900	2c. 0.000064
9×10^{2}	189×104	1.4×10-5

Estimate each value using scientific notation.

3a. 3,612,500 cm

3b. 0.000000251 ft

 $3c. 4.215 \times 10^{-3} \text{ kg}$

4. A dime is about 5.875×10^{-3} foot in diameter. Is it more appropriate to report that the diameter of a dime is 5.875×10^{-3} foot or 7.05×10^{-1} ? Explain your reasoning.

Comparing	1) Compare the exponents
Scientific Notation	2) Compare the factors (a)

5. Approximately 1.372×10^7 square kilometers of Antarctica and about 1.834×10^6 square kilometers of Greenland are covered by an ice cap. Which land mass has a greater area covered by ice?

Antarctica

Lesson 4.5: Compute with Scientific Notation

Lesson 4.5: Compute with Scientific Notation						
	Vocabulary					
Term		Definition				
Commutative Property	being able to rearrange aproblem with multiplication and addition ab = ba					
第二章 (1) 10 10 10 10 10 10 10 10 10 10 10 10 10		to regroup a problem				
Associative Property	with multiplic	ation or addition $(ab)c$ $at(b+c)=(a+b)+c$				
Multiplication with	Scientific Notation	Division with Scientific Notation				
Multiplication with Scientific Notation $(7.2 \times 10^3)(1.6 \times 10^4)$ $(7.2 \times 1.6) (10^3 \times 10^4)$ $1,52 \times 10^7$ 1.152×10^8		$\frac{7 \times 10^{9}}{3 \times 10^{8}}$ $(\frac{7}{3}) \times (\frac{10^{9}}{10^{3}})$ 2.3×10^{1}				
Decimal moved to th	e right	Decimal moved to the left				
	from the	add to the exponent				

Evaluate each expression. Express the result in scientific notation.

1a.
$$(4.62 \times 10^5)(8.15 \times 10^9)$$

1b.
$$(7.53 \times 10^{-8})(2.93 \times 10^{-3})$$

1c.
$$(1.2 \times 10^7)(1500)$$

1d.
$$(6.4 \times 10^{-5})(12,000)$$

$$2a.\,\frac{4.62\times10^5}{1.4\times10^{-9}}$$

2b.
$$\frac{2.5627 \times 10^{-9}}{5.23 \times 10^{-3}}$$

3. Until 2008, the world's largest working cattle ranch was located in Australia. It was about 6×10^6 acres. The largest ranch in the United States is 825,000 acres. About how many times larger was the ranch in Australia than the largest ranch in the United States?

Addition with Scientific Notation (6.89 × 104) + (9.24 × 105) | (7.83 × 108) - 11,610,000 (6.89 × 104) + (92.4 × 104) | (7.33 × 1087) - (1.161 × 107) (6.89 + 92.4) × 104 | (78.3 × 107) - (1.161 × 107) (9.929 × 104+1 | (78.3 - 1.161) × 107 7.139 × 107+1 7.7139 × 108 Evaluate each expression. Express the result in scientific notation.

4a. $(1.7 \times 10^7) + (6.25 \times 10^5)$

4b. $0.00864 + (5.67 \times 10^{-4})$

4c.
$$(2.84 \times 10^{11}) - (5.4 \times 10^{9})$$

4d. $0.0000321 - (4.9 \times 10^{-7})$

Lesson 4.6: Square Roots and Cube Roots

	Vocabulary				
Term	Definition	Pe	Perfect Squares		
	a number that is one	x	x^2		
Square Roots	of two equal factors	1	1		
		2	4		
Positive	Negative Both	3	9		
T9 = 3	$-\sqrt{30} = -6 + \sqrt{81} = +9$	4	16		
7 ' 3	100 0 10 = 9 or -9	5	25		
	J = is used to	6	36		
Radical Signs	indicate a square root	7	49		
		8	64		
Perfect Square	a number with a square	9	81		
r erreet square	root that is an integer	10	100		

1a. √49

1b. $-\sqrt{16}$

7

-4

E=+12

1c. $\pm \sqrt{100}$

1d. $\sqrt{-49}$

+10

Non real

10 or - 10

10.10=100

-10-10=100

2a. $\sqrt{60}$

2b. $-\sqrt{23}$

2c. √14

2d. $-\sqrt{79}$

3a. Spring Port Ledge Lighthouse in Maine is approximately 55 feet tall. Calculate about how far a person who is standing at the top of the lighthouse can see on a clear day. Round to the nearest tenth of a mile.

3b. The observation deck of the Washington Monument is 500 feet high. Calculate about how far a person on the observation deck can see on a clear day. Round to the nearest tenth of a mile.

Vocabulary						
Term		Definition	Perfect Cubes			
	anu	mberthat is	x	<i>x</i> ³		
Cube Roots		of three equal	1,	1		
	f.	Factors		8		
Positive		Negative	3	27		
3/27 =	3	3/-1000 = -10	4	64		
)	7 1,000	5	125		
			6	216		
Estimate Cuba			7	343		
Estimate Cube Roots			8	512		
			9	729		
			10	1,000		

4a. ³√64

4b. $\sqrt[3]{-1331}$

4

-11

Estimate the cube root.

5a. ³√72

5b. $\sqrt[3]{2024}$

24.2

≈ 12.6

Lesson 4.7: The Real Number System

	Vocabulary				
Term	Definition	Definition			
Irrational Number	A number that can NOT be written as a fraction A number that can Integers Integers	Irrational Numbers π			
Real Number	Rational + 10 10 10 10 10 10 10 10 10 10 10 10 10	1.21231234			

Name all sets of numbers to which each real number belongs. Write *natural* \mathbb{N} , *whole* \mathbb{W} , *integers* \mathbb{Z} , *rational* \mathbb{Q} , and *irrational*.

1a. 0.7

1b. $\sqrt{100}$

1c. $\frac{9}{5}$

1d. -6

How to compare and order real numbers...

convert all numbers into decimals

2. Replace with <, >, or = to make $7\frac{2}{5}$ $\sqrt{57}$ a true statement.

3. Order the set $\left\{\sqrt{30}, 5.6, \frac{15}{3}, 5\frac{2}{3}\right\}$ from greatest to least.

$$4a.363 = 3d^2$$

4b.
$$729 = s^3$$

$$4c. 100 = 4n^2$$

4d.
$$512 = x^3$$

5. A tsunami is caused by an earthquake on the ocean floor. The speed of a tsunami can be measured by the formula $\frac{s^2}{a} = 9.61$, where s is the speed of the wave in meters per second and d is the depth of the ocean in meters where the earthquake occurs. What is the speed of a tsunami if an earthquake occurs at a depth of 632 meters? Round to the nearest tenth.